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SUMMARY

A solution to the problem of finding the energy-optimal trajectory for
terminal rendezvous with a satellite station in circular orbit by using the
classical calculus of variations is described. A terminal-stage engine with
constant thrust and fixed burning time is specified, and both the optimal
initial conditions and thrust orientation time history are determined by
appealing to the criterion that the energy gain be maximized. The problem
is formulated in three dimensions, with the constraint that the terminal
stage must turn through a prescribed initial angle between the target orbital
plane and the rendezvous-vehicle velocity vector.

Numerical solutions to the two-point boundary-value problem were gener-
ated by using an adjoint iteration technique. Near-earth orbital rendezvous
trajectories were calculated for orbital altitudes of 100, 200, and 500 nau-
tical miles, initial thrust-to-mass ratios of 0.25g and lg, and burning
times of 100 and 200 seconds. The thrust angles for these solutions are
found to lie very close to the local horizontal in elevation and to maintain

a nearly constant bearing in azimuth with respect to the orbital plane of
the station.

Quasi-optimal trajectories, for which the thrust vector is constrained
to the local horizontal plane and to a constant azimuth angle with respect
to the station plane, were computed. These trajectories compare very
favorably with the optimal case. A degradation in effective characteristic
velocity of only 0.063 percent is shown in the worst case (high thrust, long
burning time, low altitude, and maximum plane-change angle). Gravity-turn
trajectories, which were computed for the coplanar case only, proved to be
slightly less efficient than the gquasi-optimal trajectories in each case.
The maximum coplanar effective characteristic velocity degradation is 0.040 per-
cent for the quasi-optimal mode, as compared with a O,OUb6-percent degradation
for the gravity-turn case.



INTRODUCT ION

Studies of trajectories for satellite rendezvous and of the associated
guidance problem have appeared frequently in the literature of the past few
yvears. A summary of a large sector of this work is presented in reference 1,
which is particularly valuable for its extensive bibliography. Typical
studies directed toward satellite rendezvous trajectories are found in
reference 2 where coasting trajectories for various incremental velocity

changes at rendezvous are examined.

A logical extension of previous work is consideration of the finite
thrust problem, and, in particular, the generation of optimal thrusting tra-
Jjectories. Reference 3 uses bounded thrust and a coast to achieve a point-
to-point transfer in a specified time for examining optimization of the
coplanar rendezvous problem. This approach treats the linearized equations
of motion in an attempt to develop a guidance scheme amenable to onboard

computation.

The current paper contains the results of an investigation of terminal-
stage guidance in three dimensions for rendezvous with a satellite station
in circular orbit. The particular task was one of determining the initial
conditions and steering for a constant-thrust vehicle with fixed burning time
such that the total energy gained during the terminal stage is maximized,
and a desired change of the orbital plane is achieved.

Classical techniques of the calculus of variations were applied to
determine the optimal steering function, and an adjoint iteration technique
was employed to yield numerical solutions. Rendezvous with a near-earth
satellite was chosen as a significant problem to demonstrate the method. For
this problem, parametric effects were investigated by varying the ratio of
thrust to initial mass, the burning time, the station orbital altitude, and
the required angular change of the orbital plane. The values of these
parameters were: initial thrust-to-mass ratios of 0.25g and lg; burning
times of 100 and 200 seconds; station altitudes of 100, 200, and 500 nautical
miless and plane changes up to the limiting capability for each combination
of thrust and burning time.

The use of analytical guidance schemes which provide reasonable approxi-
mations to the optimal solutions is generally more practical than attempting
to mechanize the exact optimal steering scheme. The basis of such schemes
is a simplified steering law to specify the thrust direction. Two simple
laws were investigated. The first, called the quasi-optimal case, was derived
from inspection of the optimal solutions. This scheme consisted of con-
straining the thrust vector to the local horizontal and holding a constant
bearing angle with respect to the satellite orbital plane. The second scheme
was the gravity turn, where the thrust vector is always alined with the
velocity vector. These laws were evaluated by comparing their energy gain
with that of the optimal solution.
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SYMBOLS
A coefficient matrix fgr adjoint differential equation set
B transformation matrix relating initial value perturbations
to terminal errors
c* effective rocket exhaust velocity, ft/sec
E total energy per unit mass, ftg/secg
F modified function to be optimized
f arbitrary function
g acceleration of gravity, ft/sec2
hS satellite station altitude, nautical miles
T integral
K constant
m ) mass of vehicle, slugs
m(0) initial mass of vehicle, slugs
n iteration cycle number
D adjoint variable
r, radius of earth, ft
ra rendezvous vehicle radius from center of earth, ft
ry station radius from center of earth, ft
T rocket thrust, 1b
t time, sec

u state variable in expanded system



total velocity of vehicle, ft/sec

v

Vc characteristic velocity, ft/sec

VS station velocity, ft/sec

X,Y,Z2 coordinates of rotating space station centered axes (fig. 1), ft

oA thrust elevation angle with respect to local horizontal, radians

B angle between rendezvous vehicle velocity vector and station
velocity, in the station horizontal plane, deg

Y gravitational constant, greg, ft3/5e02

JAVH change in energy during rendezvous stage, ft2/sec2

AV effective characteristic velocity, including potential energy
contribution, ft/sec

NG differential effective characteristic velocity, ft/sec

du perturbation on state variable u

6 thrust elevation angle with respect to satellite reference axes,
radians

A Lagrange multiplier, ft

T burning time, sec

© constraint parameter

¥ thrust azimuth angle, radians

Qs rate of station rotation, radians/sec

Subscripts:

i,Jd,k state and adjoint variable indices

max maximum

opt optimal

quasi-opt quasi-optimal

1,2,3

Lagrange multiplier indices; constraint indices



Operators:

(") differentiation with respect to time
(') second differentiation with respect to time
(—_) boundary value specified by problem constraints
5( ) variational operator

ANATYSIS

Formulation of the Problem

The mathematical model employed for this investigation of satellite
rendezvous was a mass-particle with three degrees of freedom moving in a
rotating cartesian axis system oriented in a satellite station. The station
was assumed to be in a circular orbit about a uniformly spherical earth.
These axes and the associated notation are illustrated in figure 1.

Satellite station

Rendezvous
vehicle

Satellite
station

Rendezvous
vehicle
T
X
Fg T \]

Local horizontal

Line of
nodes

Figure 1.- Axis system and angle definitions.



The equations of motion for this model are

\
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A rendezvous vehicle with constant thrust directed along one vehicle axis
and a constant burning rate was assumed. The angles 6 and V¢ are the
control variables and may be chosen arbitrarily. Reference 2 contains a
derivation of these equations of motion.

The quantity selected for optimization was the change in total energy
over the terminal stage. The total energy is expressed as

P %k @
il

This criterion was used rather than the familiar minimization of expended
mass in order that the burning time of the fixed-thrust engine could be
specified and all the initial conditions left free. The physical interpre-
tation of the criterion is best illustrated by an example. Consider the
problem of rendezvous from a parking orbit consisting of an initial boost, a
coast period, and a terminal boost. The energy (eq. (2)) remains constant
over any coasting orbit. Since the energy of the satellite station orbit is
fixed, maximization of the change in energy over the terminal stage leads to
the lowest possible energy for the intermediate coast and hence to the minimum
energy cut-off condition for launch boost.




The geometrical boundary conditions for the problem were then left free
at the initiation of terminal-stage burning except for the specification of
the angle between the orbital plane of the station and the coasting ascent
plane of the rendezvous vehicle. It was required that the origin of the
station-centered coordinates be reached with no relative velocity remaining
at the specified time of burnout.

To force satisfaction of the geometrical end constraints, the problem
was inverted and run backward in time starting from the origin. The boundary
condition on plane change can then be expressed as

tan BZO; = 4

Fn(e, - )

l (3)
t=0

For the backward problem, the optimization task becomes one of mini-
mizing the initial total energy. The integral corresponding to the energy,
together with the equations of motion (eq. (l)) and the boundary condition
(eq. (3)) adjoined as constraints, was varied to determine the Euler-Lagrange
equations. Appendix A contains a detailed description of this process by
which the equations for the control variables, the Lagrange multipliers, and
their associated boundary values are determined.

Trajectories which satisfy the Buler-Lagrange equations and match the
boundary conditions correspond to relative minimums for the optimization
problem, neglecting questions of existence and uniqueness of the numerical
solution. In order to determine the global minimum solution within the
stated constraints, all possible relative minimums must be rigorously in-
vestigated. Similarly, to determine the validity of the numerical solution,
the effect of perturbations on its stability must be determined. For the
current problem, the axis system employed affords a well-conditioned set of
equations of motion. dJudicious search for alternate relative minimums,
together with engineering judgment, was used to determine that the results
represented global minimums.

Tteration by the Adjoint Method

Once the differential equations governing the variational problem have
been written and the requisite number of boundary conditions has been speci=-
fied, the problem is defined in the mathematical sense. Unfortunately,
equations (1) are nonlinear and must be integrated numerically. To make
this problem computable, the two-point boundary-value problem must be con-
verted to an initial-value problem. A standard approach to this process
is to estimate initial wvalues for the unknown boundary conditions, integrate
over the interval, and then observe the errors in the known end values and
operate on them to improve the initial estimates. The logical process by
vhich the end errors are converted to initial-value corrections should force
convergence to the desired end values within a reasonable number of itera-
tions.



For this study, an iteration process described in reference 4 was
employed. This technique has also been employed recently in reference 5
for the solution of wvariational problems which are by nature two-point
boundary-value problems. The iteration process, together with the resulting
equations for application to this problem, is derived in appendix B.

RESULTS AND DISCUSSION

Range of Parameters

Numerical results were generated for the problem of rendezvous with a
near-earth satellite in circular orbit. The rendezvous vehicle was assumed
to have constant thrust directed along one vehicle axis and a specified
thrust-time duration. A constant mass rate was used which corresponded to
an effective exhaust velocity of 10,000 feet per second (specific impulse

of 310 sec).

The ranges of parameters chosen for investigation were initial thrust-
to-mass ratio, burning-time duration, orbital altitude, and plane-change
angle. The values used in this investigation are tabulated as follows:

T/m(0), g T, sec B(0), deg
0.25 100 0]
-5
1.0
1.5
200 0
1.0
2.0
3.0
1.0 100 0
2.0
4,0
6.0
200 0
L. o
8.0
10.0

A1l cases were run for orbital altitudes of 100, 200, and 500 nautical miles.
To determine the range of the plane-change angle, an upper bound in B was
calculated from the following expression:

= -1 Vé
Pmax = 10\ ()



where

0
m(T)

Vc = o¥ ln[gi-)]

There is a different characteristic velocity Vc for each thrust and burning-
time combination.

Adjoint TIteration Check

The combined variational problem and adjoint iteration scheme were tested
and found to be rapid convergent even for very poor guesses of the initial
multiplier values. Table I illustrates the convergence process for two cases.
The conditions of case 1 are: T/m(O) = 0.25g, burning time of 100 sec,

station altitude of 100 nautical miles, and a plane-change angle of l% . The

sum of the errors in end conditions j{:Suig(T) drops seven orders of magnitude

i

in four passes. Case 2 conditions are T/m(0) = 1lg, burning time of 200 sec,
and a plane-change angle of 10°. This more severe case required 12 passes,
but the error is seen to be uniformly convergent and no difficulties occurred

during iteration. Case 2 displayed the slowest convergence of all the cases
computed.

Optimal Trajectories

The profiles of the optimum trajectories, together with time histories
of the thrust vector orientation, are presented in figures 2 to 5. The
origins of the curves of the thrust elevation angle are displaced for clarity.
The thrust elevation angle measured with respect to the local horizontal a
exhibits variations with time and required angular change of plane. However,
the maximum departure from the local horizontal encountered is less than

0.055 radian. The thrust azimuth angle is nearly constant for all the cases
run.

The results from the optimal trajectories were used to evaluate the
energy decrement resulting from use of finite burning times as compared with
impulsive velocity changes. In order to make a direct comparison, effective
characteristic velocities were calculated from the energy increment realized
by using the following relation:

o < > (5)

The variation of effective characteristic velocity and of percentage
velocity differential compared with an ideal single impulse with plane change
and altitude is shown in figure 6. As would be expected, the energy change
realized decreases with increasing change of orbital plane. This decrease .
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TABLE I.- ADJOINT ITERATION

Gase | Cyele | A (v) A (1) Ay () 5\2(1) A5(r) 5\5(1) &¥(0) & (0) &, (0) 2,(0)
1 1 0 0 0 o 0 0 -0.2165%10° | 0.2687x10° | 0.7932x10% | 0
2 770.5 - 7.940 7,127 1.197 46,32 - .9176 - .51\\36x101 .6J.05><1o2 -. 309k -.20:.8><10l
3 678.5 - 7.633 7,24k 3.328 36.19 | - .7k .9560x1072 | .ugomaot .1020x1071 | 3ksgx107t
y 675.0 - T.645 7,246 3,292 35.84 | - .7923 | - .o60x1073 | -.3770107 | -.3780x1077 | -.1348x2072
2 1 0 0 0 0 0 0 0.36510" | 0.132810" | 0.2996aR | o
2 4,846 -30. 62 17,733 15,14 6U3. 4 -5.687 - TTUS00 29k6x10t | oot | - 1207a0?
3 429 —23.%2 26,984 | 31.18 <shs | - 8022 | - .300x10° | .2362000" | -.5812 -.T151
n .1,940 -23.76 34,818 3k, 56 ~ 882.3 1.881 - .1125><:Lo3 .1391x10" -.1536x101 -A1309x101
5 | -3,567 -22.97 39,397 | 3731 | -1,266 5.879 | - .35310% | .8611x10° | -.6680 -.5354
6 k516 -22.78 w,651 | 38.52 -1,488 4,998 - .9836x10" 4158007 | -.2u89 -.1968
7 | 1960 22.75 2,528 | 38.97 | 1,590 5.493 | - .oseeact | La6exa0® | -.7romac| -éz3mact
8 5,13k -22.76 w2,843 | 39.12 | -1,630 5.677 - 61Tk 58lpa0? | ..2166x107L | - 1816x107%
9 -5,19% -22. 77 42,946 39.17 -1,643 5.738 ) .1877><102 -.5823x10™2 - 5068x10™2
10 -5,213 22.77 2,977 39.18 | -1,648 5.757 - 3a0™t | .5686x00° | -.1531x1072 | ~.1379%1072
11 -5,219 -22.78 42,986 39.19 -1,649 5.762 - .78h3x10'2 .1655x101 -.396’»(10‘3 - 3679)(10')
12 | 5,220 22,78 42,988 | 39.19 | 1,689 | 576 | -.1850a07 | k656 -.2005x2073 | -.g680x10™*
is less marked at higher altitudes, primarily because a smaller addition of
velocity normal to the station plane is required to rotate the orbital
velocity through the desired angle (orbital velocity decreases with altitude).
The ratio of characteristic velocities similarly decreases with increasing
orbital-plane change, which indicates that the cost of finite burning time
increases with the turning angle, even when normalized by the characteristic
velocity requirement.
For the cost criterion, finite burning times have a small advantage
over impulsive velocity corrections in the coplanar case with the initial
point unconstrained if only a terminal impulse is allowed. This is not
totally unexpected, since, in general, two impulses would be required to
achieve rendezvous from arbitrary initial conditions, and the sum of the two
velocity increments would be less than the single increment for an equal
change in energy. A heuristic explanation for this statement can be drawn
from consideration of the rate of change of energy
-—
B e .
E=V-.V+ — T (6)
r 2 °f
f
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CONVERGENCE EXAMPLES

&;m

-0, 5000)(102
.1529x10"
.1380x107t

. 6820x1072

-0, 99hix10°
.2289%10°
-.15T2x10°
. 3366x10°
.2148x10°
.1235x10°
. 5hllx10t
.2027x10"
L6751
.2093

.6187%10°1

| - 1765%107t

(0)

-0.9913
- . bg5s%10L
- .4592x1072

. 1797%1072

-0, 9325><101

- .o3hgx10*
- .2926><;|.ol
- .1h35%10%
- .8573
-~ .392k4
- .1510
- .51k8x107t
- .1621x107t
- . 48Llx1072

- .1393x1072

- .3895%107

Error
'2; o, 2 (1)
0.50153x10°
. 37632%10°
.2123x10%

. 1472x1072

. 1608><108

]

.9333x107
.567hx107
. 19h9x107

. 7’432><106

. 1731)(106
27707
. 3“17)(10“
. 3528x10°
3238107
.2736x10%

.2171

E, (1)

0. 3466x10°
- .3ks9x10°
- . 3456x10°

- 3458107

-0, kkp0x10%
- bk’
- .borox16?
- .3935%10°
- . 35005007
- .3888><109
- .3885%107
- .3881»(109
- .388&)(109
- . 388kx10°
- .388x10°

- 588!+x109

&, (0)

-0, 7705x10°
.9198x10°

. 3529x10%

-0, k860"

. M¢16><10l+

. 2369x10“
. 1627x101*
.9492x10°
MbhIx10°
. 1736)<le
.5990x10°
. 1901&)(102
.5723%10%

. 165hx10%

. 7291X10

.1009x10™

.3532X10™

&, (0)

. T9hox10%
. 3064

.1127%107t

. 3061107

1

Lh321
. 7897
L1911

.2386x107"

1

.8056x1072

2

. 1262x1072

.ho71x10™7

&A,(0)

-0, 7127)(th
- 1166x107

- .2583x10"

-0.17733x10°

- .9z5100"

- 7833)(101‘

- .15Box10"
- 22330
- .8971X107
- .3160x10°
- .1020x10°
- . 3099107

— .9030x10%

- .25hoxaot

51, (0) 5A5(0) 8h5(0)
-1.197 -46.32 0.9176
-2.130 10.13 -.1232

.03538 .3502 -.002109
-0.1515x10° | - 0.6k3410° | 0.5687x10"
- . 1603%10° .9679x10° |  -.4885x10%
- . 338610 55TX10° | -.2683x101
- .2750;(101 .)833><103 -.1998><10l
- .1203x10" 2201107 | -.1119%10%
- U562 .1026x10° -. 4953
- 1517 .30k7x10P | -.1838
- .h653><10'1 .15h1+x102 - 6086x107%
- .1350x107% A23ix10t | - 1877xa07t
- .3841x1072 L126310° | -.5508x072
- .1058x1072 .3633 -.1571x1072

It is clear that the incremental change in energy is maximized if the vehicle
is accelerated when the velocity is as high as possible (and with acceleration
Hence for this problem, it is advan-
tageous to thrust before the vehicle reaches apogee (minimum velocity) as long

principally along the velocity vector).

as no plane change is required.

In the latter case, the advantage of turning

a smaller velocity vector negates the benefits of accelerating at high veloc-

ity.

to the local horizontal plane and held at a constant bearing angle with
respect to the satellite orbital plane.

From inspection of characteristics of the optimal trajectories, a
quasi-optimal flight was defined for which the thrust vector was constrained

It was necessary to iterate to

determine the bearing angle necessary to achieve a prescribed plane change.

velocity in the quasi-optimal case.

Figure 7 is a typical plot of the losses in effective characteristic

effective characteristic velocity, defined as

AV = AV .
c,quasi-opt

AVé,opt

The parameter plotted is differential

(7)
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Figure 6.- Effective characteristic velocity variation with orbital altitude
and inclination.

_(_YT T
(a) G = 0.25g; T= 100 sec. (b) m = 0.25g; T= 200 sec.

A negative AV indicates that the energy gain over the quasi-optimal tra-
Jjectory is less than that over the optimal trajectory. Note that the losses
decrease and then increase with increases in orbital-plane change. This
variation can be correlated with the time histories of optimal thrust eleva-
tion angle in figures 2 to 5 where it can be seen that this angle most closely
approaches zero for medium orbital-plane changes. The comparison between
optimal and quasi-optimal paths is very favorable, which indicates that
guidance modes based on the quasi-optimal path should be highly efficient.
The maximum penalty for using the quasi-optimal guidance mode occurs for the
maximum plane change and is only O.063 percent for the worst case encountered
(T/m(0) = 1g, T = 200 sec, h_ = 100 nautical miles ).

A second simplified flight path, the gravity-turn trajectory, was tested
for the coplanar cases.

In the gravity turn, the thrust is always collinear with the velocity
vector which lies close to the local horizontal for rendezvous with a
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satellite- in circular orbit when the velocity gains over the terminal stage
are of the order considered here. The resultant effective characteristic
velocities were calculated by using equation (5) and are listed in table 1I,
together with comparable figures for the optimal and quasi-optimal cases.

The quasi-optimal mode proved to be slightly more efficient than the
gravity-turn mode. Effective characteristic velocity showed a maximum
degradation of 0,040 percent for the case where T/m(0) = 1g, T = 200 sec,
and hs = 100 nautical miles, as compared with a O,O46-percent degradation

for the gravity turn.
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TABLE II.- EFFECTIVE CHARACTERISTIC VELOCITY FOR COPLANAR CASE

) ) T &, A;, £t/sec
h_, nautical miles | —rsy, 87T, sec ft7sec PS— p——

100 - 0.25 100 774, 26872 ~0. 00201 -0. 00202
200 1,493. 2660 - 0591 - .0592

1.0 100 2,791.8851 - .10k9 - .1101

200§ 4,977.6283 -1.9763, -2.2839

200 0.25 100 TTh. 26198 -0.00162 -0, 00163
200 1,493, 1625 - ,0L68 ~ . 0486

1.0 100 2,791. 7875 ~ .08kg ~ . 0898

200 | 4,976.2501 -1.9188 -2.1217

500 0.25 | 100 TTk. 25523 -0.00127 -0. 00130
200 1,493.0751 - .0375 - .0389

1.0 100 {2,791.7053 - L0682 - .072h

200 4,975. 070k -1. 675k -1.8387




CONCLUDING REMARKS

Energy-optimal trajectories for terminal-stage rendezvous with a
satellite station in circular orbit which used a constant-thrust rocket with
a fixed burning time have been derived by using the calculus of variations.
The problem is three dimensional, including the constraint that the terminal
stage is to turn through a given initial plane-change angle. Numerical
solutions to the resulting two-point boundary-value problem have been gener-
ated by using an adjoint iteration technique.

Near-earth orbital rendezvous was examined for orbital altitudes of
100, 200, and 500 nautical miles, initial thrust-to-mass ratios of 0.25g
and 1lg, and burning times of 100 and 200 seconds. The resulting prescribed
thrust angles lie very close to the local horizontal in elevation, and are
nearly constant with respect to the target orbital plane in azimuth.

Quasi-optimal trajectories were computed by holding the thrust vector
in the local horizontal at a fixed azimuth angle. These trajectories, which
show a maximum degradation in effective characteristic velocity of 0.063 per-
cent, compare very favorably with the optimal trajectories. Gravity turns
were also run for the coplanar case.

The quasi-optimal path proved to be the more efficient of the simplified
trajectories. A degradation in effective characteristic velocity of
0.040 percent was shown for the worst coplsnar case as compared with O.Ol6-per-
cent degradation for the gravity turn.

Manned Spacecraft Center,
National Aeronautics and Space Administration,
Houston, Texas, March 26, 1963.
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APPENDIX A

OPTIMIZATTION OF ENERGY CHANGE FOR NONLINEAR EQUATIONS OF MOTION

The description of the problem of rendezvous of a mass-particle with a

satellite in circular orbit is provided by the following equations of motion:

X =z
m

T
- 0 i -
CcOs sin III Y 5

r

o o_x[X_ .2
cos O cos ¥ + EQSZ X< 3 Qs )
£

X

T

r

T . : . 2
- sin 0 =~ 2QSX + (rs - Z)< 3 - QS >
f

(A1)

(a2)

(43)

The variables are defined with respect to the satellite in a rotating system.

(See fig. 1.)
period be maximized.

The energy is expressed as

E

where

R e AL
S s

v
2

- Z) +

and the integral to be maximized is

where
. T .
E=—{[X+Q(r -Z):lcose
m s\ s

Three constraints, ¢l’ ¢2, and ¢3,
dynamic equations (Al) to (A3). A

cos ¥ + Y cos O sin ¥ - (Z + QSX)sin é}

arise from requiring satisfaction of the

fourth constraint is introduced when it

It is required that the éhange in total energy over the burning
The variational notation used in reference 6 is employed.

(a%)

(45)




is required that a specified change in the orbital plane of the vehicle be
made. This constraint can be expressed as

QPLL = Y - I:X + Qs(rs - Z):‘tan W't o =0 (A6)

The first three constraints are adjoined to the function to be optimized with
Iagrange multipliers

F=E+ Ny +Ap, + A (AT)

3P3

The integral to be operated on is altered accordingly

T

T = f (E AP, *+ A0, + 7\5cp5) at (A8)
0

and the variation taken
Tr, . oP . oPp
JE &y P, 5) OF AP
81 = Jf [KBX + xl 5 xg = ° %5 S% X + ak + %5 ~ oX

Xp P X .
. 1 o) : z JE\ .
+ A, X + <7\l -gY—- + 7\2 W + 7\5 Y >5Y + (—a&’>5Y + 7\2 BY

A2 R s at (89)
MW Ty )Y 9
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Integrating by parts in the usual manner

D e, stan one (B, 3 E_;
= [7\1 BX + 7\2 oY +7\5 8z +<a).( +7\3 - l)ax +<a§( - 7\2>
OE a‘P 1 ac92
+<5‘Z'+7‘1_a',7_'7‘3>62i|t0 f{ M TN
P : Xp Xp Xp P
5 _ 43k _3_3 1 2 -2
A3 3% dt<' A 7‘1>J5X+[7‘1 T "MW N w
X b4
_d_g.E_ . BE &pl a‘Pg ?Qfé
-dt<ai{~7\2>J5Y+I:_8—+7\16_Z_+?\2§Z_+?\5 7

X P X, Xp
el —1 el Rkt —2 2
(az A S Asﬂ oz + <ae TMNS O TAT TN >66

+

. XP o
(%% + gxl?l + 5\72)&'} at (A10)

Considering the boundary conditions, all the physical variables are defined
at t = T, since it is specified that the vehicle is to back off from a
rendezvous. Therefore, all the Lagrange multipliers are unspecified at t = 7.
At t = 0, constraint equation (A6) is applied, but the end conditions are

otherwise free. The variation of equation (A6) is written
5Y = (zsx - O, 82)tan BZOSIt:O (A11)

This relation is substituted to eliminate &Y from equation (A10), and the
fundamental lemma of the calculus of variations is applied to the boundary-
value bracket. This leads to the following end conditions on the multipliers:

|
Kl(O) = - Ag tan Bio;’t:O

il(o) = E cos 0@ cos W't:O

A,(0) = = cos © sin ¥[, (a12)
7\5(0) =0

5\3(0) = %, O tan B(0) - -E sin of,

22



S ST

Note that 7\2(0) is free, but Y(0) is defined by equation (A6).

Again, applying the fundamental lemms to the quantities under the integral
and thus setting the coefficient of each variation equal to zero yields the
Euler-Lagrange equations.

\
. 2 37X - Z
7\__.20')\ - _t__Qg _2&}\ +2LXX.}\ _AIE—_))\
1 s 3 3 s 51" 5 "2 5 3
Tr Te Tp Tp

+ —[(QS - 9 cos xy)sin 6 -('Ell- cos ¥ + 11f sin \|I>COS 9]

) 3¥Y(r -~ Z "
N\ =.5_LX_¥')\ __L_B_Yﬁk ____K_S__).')\ _I[Gsinllfsine
2 5 "1 . 3 r 5 ]2 . 5 3 m
f f f f

+ <$ sin ¥ - 1|f cos \],r>cos G:I

. . 3YX(r - Z BY‘Y!I‘ -ZZ
7\=_QQ)\___£_S__27\_ S A - _.'L_QQ (A13)
b) s 1 r5 1 r5 2 r3 S
iy i f
2
3¢(r, - 2 . .
- 55 7\5+%%sine+(ﬂs cosx]x—@)cose
r
f
.Z+XQ - A )cos V¥
tan9=_(_~-.» S 5)
X+ qr -Z) =N
Y -2
tan ¥ = 2

}'{+QS(I‘S-Z)-7\1 Y.

These equations, together with the constraint equations (Al) to (A3), the
six boundary values at t = O specified by starting at rendezvous (all relative
velocities and displacements Zero), and the six boundary values at t = 1 from
equations (A6) and (All), completely specify the problem.

23



APPENDIX B
EQUATIONS FOR ADJOINT ITERATION

A general method for the satisfaction of dynamic two-point boundary-value
problems is described in reference k., This method is applied to the optimi-
zation problem of this paper. In this appendix, the iteration technique 1is
first developed in general terms, and then the specific substitutions used in
solving this problem are stated.

The set of three second-order differential equations (egs. (1) to (3)),

together with the associated lagrange multipliers (eq. (A13)), is considered
as the equivalent set of 12 first-order differential equations:

ai = fi(uj',t) (B1)

where

ui(O) = uiZOS (i=1,2,. .., 6)

ui(T) = uiZTi (i=6,7, ..., 11)

The variable Sui is defined as a first-order perturbation about u

af

du, = Z -au—J BuJ (B2)
J

The equations adjoint to the set of equations (B2) are described by

of.
D, = - —a-é'pj (B3)

If the set of equations (B2) is multiplied by P, and the set of equations
(B3) vy 8ui and the resulting relations added and summed on i, then

Z(piﬁﬁi + biﬁu Z y 5= U 5P5 Z Z af P Bu, (Bk)

It is seen that the right-hand side vanishes because of the symmetry of the
indices. Finaily, integration of equation (B4) from t =0 to t =7 yields
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the desired adjoint relationship

) 2,(0)8m,(0) = ) v, ()ouy (1) (85)

i i

Now, if Sui(T) is defined as error observed in the end boundary values

Sui(T) = ui(Ts - ui(T) (B6)

It is seen that equation (B5) gives a means of reflecting these terminal
errors back to determine initial value improvements.

To determine the six required values of 6ui(0), the adjoint equations

(B3) are integrated backward from t = T to t = O for six distinct sets of
end conditions. For convenience, these end conditions were chosen to be
identically zero except for one value for each set which corresponds to a
known end condition.

|
=

p; 1. (T) = (k =1 +5)

(BT7)

(t) =0 (k#i+5;i=21,2, .. ., 123 k=1,2,. . ., 6)

Pk

Once this integration is performed, the resulting values are substituted into
equation (B5)

) By 1 (0) B (0) = By () (58)
i
and the six equations yielded are solved simultaneously for Sui(O).

Finally, improved initial estimates are calculated

ui(O) = ui*(o) + aui(o) (i =7,8, ..., 12) (B9)

This iteration process is cycled until the end errors fall within a desired
tolerance.

It must be noted that the Sui(O) corrections only satisfy conditions

for small pertur%ations about the nominal solution. An additional test was
provided in the actual mechanization of the problem to prevent the computa~
tion from diverging if the initial errors were too large. This test. required
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satisfaction of the relation

SHOIS ou (1)| 2

<
a, (0) %, (0) (B10)
1 n+l i n

Now the substitutions required to state the explicit problem are defined

as:
u =X = £ ﬁ7 =7 =1 7
u, = X = £, ﬁ8 =\ =1y
u; =¥ =1y ﬁ9 =%, = 1 -
Bl1
ﬁu =2=1, ﬁlO =2 =T
ug = 2 = £ hll = Ay = Ty
b = ¥ = £y U, = iz =T J
The desired boundary values on Bu, (eq. (B2)) are
5U.i("[') =0; i=1, 2, , 6 N
Bu  (0) = [% + (v, - Zj]tan B(0) - iltzo
Bu,(0) = - A, tan B(0) - .
Bug(0) = % cos 8 cos ¥ - A, o > (B12)
su_(0) = = cos © sin ¥ - A
9 m L
aulo(o) = - AB o
Sull(O) = A0, tan B(0) - g sin 6 - i5 0

Equation (B2) is not integrated since all of its boundary values cannot
be specified. Equation (B3) is integrated, and since it is linear and will
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be used with six distinct sets of starting values on Py it is most easily
treated as a vector-matrix equation.

] - e

where the matrix [pk j:' is of dimension 12 X 6 and [Ai K| iselzxiz
J )
square matrix. In the matrix [p], the j columns are associated with the

six sets of end conditions. The matrix [p(fr)] is defined as

2
p; 5{r) =0 (1#3+5)
pi,J(T) =0 (i =1, ., 5, 12) g (B1k4)
p; 5(1) =1 (1=3+5=6,7,...,11)

’ ,

Integrate [;‘;] from t =0 to t =1 together with the set u;. At

t = 1, the following relation is solved to find the required initial improve-

ments:
{Sui("r} = [5] Esui(o} (B15)

where (511].} is a six vector and [B] is a 6 X 6 matrix defined from the

elements of [p] as .
[B]- =|:pj’i] (B16)

where
j=1,2,...,6
i=T7, 8, ., 12

This process is equivalent to the solution of equation (B8).

A\The elements of Ai,k:‘ are listed below, where missing elements are
understood to be zero.
--Isinecosxl;'—a-9-+—-'r—-Q2 -éﬁé (B17)
A1,2 T m X <rf5 s ) rf5
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T . i 06 XY
Al’u=531n951n\l/-a§-2r§— (B18)
ra )
T BYx(rS - Z
Al,6 = a cos © g}z + 5 (Bl9)
T
f
2
- é_r_ 2%
Al)8 = { + [30\2 - (rs - Z>?\5] <1 - 2)
r
hil
- = {(Q -6 cos \]f)COS 8 + (E cos | + W sin \lf)sm 8] 99
m s m X
- —g}% cos ¥ sin 6 - %lé sin ¥ cos 9} (B20)
2 5XY[(r - 2
_ 3 o 5v2 (rs - 2)
Al,lO - 5%7\1(1 - 2> - X7\2<1 - 2> - 2 7\5
£ £ Te Te
o [T ' m . d0
+E/L9 sin ¥ cos O - <urﬁ sin ¥ - ¥ cos \Jf>sin eJ-B—X
+%}% sin ¥ sin 6 = % cos ¥ cos 9} (Be1)
2 XY{r
. ;_L{ o L 2,
1,12 2
- XAB[l } —E{l}ﬁn cos O - (QS cos ¥ - é)sin e}%}%
S
- X cos (B22)
fp=-1 (B23)
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A2 5 = %(sin 8 cos ¥ _B_Q + cos O sin ¥ ﬂ) (Bal)
’ X X

A =—T-sinesin1|f—a-_g—cosecos11f-a-y (B25)
2,)4- m BX a)'c

A2,6 = % cos © 8_9_ - 20, ' (B26)

;X

A2,8 = = % {[(Qs - B cos \Lr)cos 0 +<% cos ¥ + W sin \|f>sin e]@ﬁ

X
+ [6 sin 6 sin ¥ + (E sin ¥ = 1]! cos \1f>cos 9]@"
" dX
- __8_9 cos ¥ sin © - _@_\1_; sin ¥ cos 8} (B27)
X X

AE,lO = % {[6 sin ¥ cos © = <§- sin ¥ - \II cos \1f>sin e]i

+ [9 cos ¥ sin 6 + <% cos ¥ + \1/ sin W)cos 6]@
;X

+ _BE sin ¥ sin 6 - é\k cos ¥ cos 6} (B28)
X X

T [[m N . d6
A2,12 = - = {m cos 6 - (QS cos ¥ = 9)s1n 9] .

X

- Q_ sin ¥ cos 8 Q\lf._ - _8_6 cos 9} (B29)
X X
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30

A5

A ),

5,10

s2

A3,12

I'f5
X (. 3
rf5 rf2
Y(r, = 2

r5

f

2 v2 5XY(r - z)

L 20 _ 22X _ 2 _ s
T5Pl<l r2>+m2<l 2T eE
f b f £
+§<§Te{ cos ¥ sin © +%‘% sin ¥ cos e>

36
-gicos 5]

B3

5rS-Z2
- +
+Y7\31 r2

<sin © cos © —a,—e 4+ cos O sin ¥ ﬂ)
oY dY

g2i3

(B30)

(B31)

(B32)

(B33)

(B3k)

(B35)

(B36)

(B37)




Ay ), = E(sin ® sin ¥ @ - cos 0 cos V¥ _8_\{1_) (B38)
A dY dY
T 00
A = = cos B8 — (B39)
4,6 m aY

A“_’8 = --g !:(Qs - 9 cos \If)C:os © +<% cos V¥ +\.}/sin W)sin 9:)%

+ ]:e sin ¥ sin © +<E sin ¥ -1}/ cos 1!/>cos GJQE
" dY
- _6_9_ cos ¥ sin 6 - ﬂ sin ¥ cos © (B4O)
oY oY

Alt,lo =% l:@ sin ¥ cos © - <% sin ¥ - 11/ cos \V)sin Gilii
+ [@ cos ¥ sin B +<E cos ¥ + 11/ sin W)cos Ggl—a}—v
m oY
+_876 sin ¥ sin 6 - _5_\11_ cos ¥ cos 6 (B41)
oY dY
Ah 1= "5 lrin-co:s s -(Q cos ¥ - é)sin e-@_g
5 |_m s >
- Q sin V¥ cos G-in——a-,gcose (B42)
° dY vy
vX(r - 72
A5,2 = %(sin 0 cos ¥ %—g + cos O sin ¥ %%) + %———) (B43)
£
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213

B3

B3

Bl3
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(sin 8 cos V¥ 98 + cos 0 sin ¥ %{—) (B56)
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A7l¥=£<5in Gsinxlfg—.)e\——cos o cos W'%{") (B57)
’ 1 1
Jolé
A7,6 == cos O -871- (B58)
I 2 3yX2 T :
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-QS sin ¥ cos G%L-gs\—cose (B61)
1 1

3k




[}

2(8_'9_
I/
Bkl
(20
2/
8%1

cos ¥ sin © +§‘.L sin ¥ cos G>
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sin ¥ sin 6 - i cos ¥ cos 9>

T 36

20 + = —— cos ©
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T/ .
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m
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A9,10 =—%< - 3_Y§>+§ [e sin ¥ cos 0 - (% sin ¥ - ¥ cos q,>sin GJ%@\;

£ f
+ l:e cos ¥ sin 6 + <E cos ¥ + qf sin 1|I>COS Gi,%k—
m 7\2
+ —g;}\_ sin ¥ sin © - g—;!\— cos ¥ cos © (B70)
2 2
BYY(I’S - Z) 7/l .
A_9)12 =———5— - ECOS 0 —<Q cos | = 9)311'1 e—.aT
T 2
f
(B71)

A =Ea,—9vcosu/sir1 9+§w:—-sinllfcos 6\ (B72)
2 2
Ao, =72 (B73)
AlO 10 = E&— sin ¥ sin 6 = —BL cos ¥ cos © (B74)
m
’ oA oA
2 2
T 6
80,12 = i‘-— cos @ (75)
A
2
T 6
All,2 = — sin 8 cos V¥ -55\-; (B76)
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